好心情说说吧,你身边的情绪管理专家!
好心情说说专题汇总 心情不好怎么办
高中数学教案
作为一位无私奉献的人民教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么应当如何写教案呢?下面是小编精心整理的高中数学教案(精选9篇),欢迎阅读,希望大家能够喜欢。
2024高中数学教案全套 篇1教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:⒈说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
⒉指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过a(-10,0)、b(10,0)、c(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求a2p2的长度。
例3、点m(x0,y0)在x2+y2=r2上,求过m的圆的切线方程(一题多解,训练思维)
四、小结练习p771,2,3,4
五、作业p811,2,3,4
2024高中数学教案全套 篇2教学目标:
1、理解并掌握曲线在某一点处的切线的概念;
2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想。
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点p附近的曲线放大,那么就会发现,曲线在点p附近看上去有点像是直线。
如果将点p附近的曲
查看更多>>作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是小编精心整理的高三数学三角函数复习教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学三角函数课件和教案 篇1教学准备
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并规定0向量与任何向量的数量积为0。
×探究:1、向量数量积是一个向量还是一个数量?它的`符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。
高中数学三角函数课件和教案 篇2教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
查看更多>>作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。
高中数学教案优秀教案设计 篇1一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(二)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学教案优秀教案设计 篇2一、探究式教学模式概述
1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。
2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学
查看更多>>作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。
高中数学完整教案设计 篇1教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程设计
第一课时:四种命题
一、导入新课
【练习】1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
查看更多>>